Nitric oxide-induced cytostasis and cell cycle arrest of a human breast cancer cell line (MDA-MB-231): potential role of cyclin D1.

نویسندگان

  • S Pervin
  • R Singh
  • G Chaudhuri
چکیده

DETA-NONOate, a nitric oxide (NO) donor, induced cytostasis in the human breast cancer cells MDA-MB-231, and the cells were arrested in the G(1) phase of the cell cycle. This cytostatic effect of the NO donor was associated with the down-regulation of cyclin D1 and hypophosphorylation of the retinoblastoma protein. No changes in the levels of cyclin E or the catalytic partners of these cyclins, CDK2, CDK4, or CDK6, were observed. This NO-induced cytostasis and decrease in cyclin D1 was reversible for up to 48 h of DETA-NONOate (1 mM) treatment. DETA-NONOate (1 mM) produced a steady-state concentration of 0.5 microM of NO over a 24-h period. Synchronized population of the cells exposed to DETA-NONOate remained arrested at the G(1) phase of the cell cycle whereas untreated control cells progressed through the cell cycle after serum stimulation. The cells arrested at the G(1) phase after exposure to the NO donor had low cyclin D1 levels compared with the control cells. The levels of cyclin E and CDK4, however, were similar to the control cells. The decline in cyclin D1 protein preceded the decrease of its mRNA. This decline of cyclin D1 was due to a decrease in its synthesis induced by the NO donor and not due to an increase in its degradation. We conclude that down-regulation of cyclin D1 protein by DETA-NONOate played an important role in the cytostasis and arrest of these tumor cells in the G(1) phase of the cell cycle.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Crude Methanol Extract of Echinophora Platyloba Induces Apoptosis and Cell Cycle Arrest at S-Phase in Human Breast Cancer Cells

The aim of the present study was to determine cytotoxic activity of crude methanolicextract of Echinophora platyloba on breast cancer MDA-MB-231 cell line. The free radicalscavenging effects of methanolic extract of E. platyloba were tested using DPPH method.Crude methanolic extract exhibited potential antioxidant activity with an IC50 value of 234.28 ±21.63 μg/mL when compared to the standard ...

متن کامل

Crude Methanol Extract of Echinophora Platyloba Induces Apoptosis and Cell Cycle Arrest at S-Phase in Human Breast Cancer Cells

The aim of the present study was to determine cytotoxic activity of crude methanolicextract of Echinophora platyloba on breast cancer MDA-MB-231 cell line. The free radicalscavenging effects of methanolic extract of E. platyloba were tested using DPPH method.Crude methanolic extract exhibited potential antioxidant activity with an IC50 value of 234.28 ±21.63 μg/mL when compared to the standard ...

متن کامل

Evaluation of miR-34a Effect on CCND1 mRNA Level and Sensitization of Breast Cancer Cell Lines to Paclitaxel

Background: A growing body of literature has revealed the effective role of miR-34a, as a tumor suppressor and regulator of expression of multiple targets in tumorigenesis and cancer progression. This study aimed at evaluating the potential effects of miR-34a alone or in combination with paclitaxel on breast cancer cells. Methods: After miR-34a transduction by lentiviral vectors in two MCF-7 an...

متن کامل

Ethanolic Extract of Propolis from Kerman Area Triggers Apoptosis and Arrests Cell Cycle in Three Human Breast Cancer Cell Lines MDA-MB-231, SKBR and MCF-7

Background: Cancer is one of the major health problems worldwide and natural resources are being explored to develop anticancer drugs with fewer side effects. Iranian propolis contains components including flavonoids and polyphenols and has various medicinal properties. The aim of this study was to investigate the effect of Ethanolic Extract of Sirch Propolis (EESP) on three br...

متن کامل

Cell cycle arrest in Metformin treated breast cancer cells involves activation of AMPK, downregulation of cyclin D1, and requires p27Kip1 or p21Cip1

BACKGROUND The antihyperglycemic drug metformin may have beneficial effects on the prevention and treatment of cancer. Metformin is known to activate AMP-activated protein kinase (AMPK). It has also been shown to inhibit cyclin D1 expression and proliferation of some cultured cancer cells. However, the mechanisms of action by which metformin mediates cell cycle arrest are not completely underst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 6  شماره 

صفحات  -

تاریخ انتشار 2001